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Challenges for Prediction

! Data generated by complex, multiscale dynamical systems: 

! Governing equations unknown 

! Nonlinear dynamics 

! Partial observations 
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NCEP

Oceanic Nino Index NOAA

Multiscale Problems

observation

F
response

data spaceX

X

R

z! = F(! ! )

! ! = ! ! (! ) x = X (! )

!
state space"

¥ Predict response, given time-ordered data (x1, z1), (x2, z2), . . . , (xn, zn)
¥ Goal: Map new datax := x(t ) to response at a future timez(t + ! )
¥ Challenge: unknown (nonlinear) dynamics; only macroscales are observed
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OPTIMIZED SAMPLING FOR MULTISCALE DYNAMICS 133

(a) mrDMD sensors from QR (b) t1=6/1992 (c) t2=6/1996

t1 t2 t3 t4

(d) mrDMD map 1990-2006 (e) t3=6/1999 (f) t4=6/2002

Fig. 10 . Reconstruction from 30 sensors in ßow Þeld. mrDMD reconstruction from sensors
is reasonably accurate across snapshots selected from di ! erent time windows of the decomposition.
Each snapshot of 44219 gridpoints is approximated to less than 5% relative error.

In a broader context, our algorithmic developments provide a principled frame-
work for understanding the optimal placement of sensors in complex spatial environ-
ments and/or networked conÞgurations. The greedy QR column pivot selection used
for selecting sensor locations leverages the dominant low-rank features of the multi-
scale physics in order to best predict and reconstruct the spatiotemporal dynamics.
By incorporating a multiresolution analysis tool, i.e., the mrDMD, respect is also
given to the diverse temporal phenomena that are often observed in practice. By
systematically accounting for multiscale physics, this placement of sensors performs
signiÞcantly better than the same limited number of sensors that do not account for
these physics.

The optimized sampling and prediction algorithms developed here have poten-
tial for a wide variety of technological applications. Indeed, with the global increase
in sensor networks and sentinel sites for monitoring, for instance, ocean and atmo-
spheric dynamics, disease spread across countries, and/or chemical pollutants, new
methods are needed that respect both limited budgets (i.e., limited sensors and cost)
and multiscale physics. To our knowledge, our algorithms are the Þrst to simulta-
neously take into account both of these critical components in an e! cient, scalable
algorithm.

Reproducible research. We provide a Matlab code supplement [40] that in-
cludes:

(1) functions to compute the mrDMD and multiscale sampling for a given dataset.
(2) scripts that generate the data and Þgures in this paper.

Acknowledgments. We are grateful to Travis Askham, Bingni W. Brunton,
Joshua L. Proctor, Jonathan H. Tu, and N. Benjamin Erichson for valuable discussions
on DMD and sparse sensing.
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LorenzÕs analog forecasting

! Predicts response variable at a speciÞed lead time 

! Discontinuous wrt initial data 

! Limited predictability for chaotic systems

 3

Zτ(x) = fn⋆+q

n⋆ = arg min
n

d(x, xn)

{xn, fn+q}N
n=1Given time-ordered observations+response data

Prediction at lead time τ = qΔt at new data x

 [Lorenz 1969]



Kernel analog forecasting

! Weighs response data points using a weighting kernel 

! Continuous wrt initial data 

! Provably accurate in large data limit
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Zτ(x) =
1
N

N

∑
n=1

p(x, xn)fn+q

p(x, xn) =
l(τ)

∑
j=1

ψj(x)ϕj(xn)
λj

Given time-ordered observations+response data

 [Zhao & Giannakis 2016] 
[Alexander & Giannakis 2019]

p : X × X → ℝ

 [Lorenz 1969]

Zτ(x) = fn⋆+q

n⋆ = arg min
n

d(x, xn)

{xn, fn+q}N
n=1
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Koopman operator
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Multiscale Problems

observation

F
response

data space X
X

R

z⌧ = F (!⌧ )

!⌧ = �⌧ (!)
x = X (!)

!
state space ⌦

• Predict response, given time-ordered data (x1, z1), (x2, z2), . . . , (xn, zn)
• Goal: Map new data x := x(t) to response at a future time z(t + ⌧)
• Challenge: unknown (nonlinear) dynamics; only macroscales are observed
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! Ergodic ßow                      

! Invariant measure 

! Continuous response ÒobservableÓ  

! ÒPerfectÓ forecast deÞned by Koopman operator 

Φτ : Ω → Ω

μ

(UτF)(ω0) = (F ∘ Φτ)(ω0) = F(ωτ)

Uτ : L2
μ → L2

μ

F ∈ L2
μ

Koopman operator linearization

• Nonlinear ODE in a = [x , y ]T exhibiting scale
separation, ✏ small

ẋ = N(x) +
1

✏
h(y)

ẏ =
1

✏2
g(y)

• Lift into infinite-dimensional function space of
observables f (x , y , t) 2 L

2

• Linear predictor: Koopman operator U t
✏ : L2µ 7! L

2
µ

U
t
✏ f (a(t0)) = (f � �t)(a(t0))

= f (a(t0 + t))

f

Nonlinear

!(0)

�t

!(t)
. . .

F0

U
⌧

F⌧
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Nonlinear in state space Linear in L2

F

Key idea: lift  to inÞnite-dimensional function space

 [Koopman 1931]



Reproducing kernel Hilbert Spaces

! Machinery for lifting - RKHSs 

1. Symmetric positive-deÞnite kernel  

2. Corresponds to unique RKHS  

3. Reproducing property => point wise evaluation 

! Feature spaces associated with certain kernels are inÞnite-dimensional 
(MercerÕs Theorem)

!7

f(x) = ⟨kx, f ⟩ℋ, kx = k(x, ⋅ ), ⟨kx, kx′!⟩ℋ = k(x, x′!)

k : X × X → ℝ

ℋ

[Moore-Aronszajn theorem]



Kernel analog forecasting
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Ut : L2
μ → L2

μ

Multiscale Problems

observation

F
response

data space X
X

R

z⌧ = F (!⌧ )

!⌧ = �⌧ (!)
x = X (!)

!
state space ⌦

• Predict response, given time-ordered data (x1, z1), (x2, z2), . . . , (xn, zn)
• Goal: Map new data x := x(t) to response at a future time z(t + ⌧)
• Challenge: unknown (nonlinear) dynamics; only macroscales are observed
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H

H

X

Image: D. Giannakis

! Optimal prediction from observations: conditional expectation 

! Approximate minimization in subspace 

                                                  
Zτ = arg min

g∈ℋ
∥g ∘ H − UτF∥L2

μ

lim
l→∞

lim
N→∞

Zτ ∘ H = 𝔼[UτF ! H]
 [Alexander & Giannakis 2019]

! Convergence in large data limit to conditional expectation

𝔼[UτF ! H] = arg min
g∘H∈L2

μ

∥g ∘ H − UτF∥L2
μ

= proj
HX

UτF

(data-driven)



! To see how it works, rewrite predictor as projection 

! Eigenvectors         of NxN kernel matrix on data points 

! Nystrom extension to new data point given by 

Kernel analog forecasting
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Zτ(x) =
l(τ)

∑
j=1

cj(τ)

λj

ψj(x)

Gij = k(xi, xj)

cj(τ) = ⟨ϕj ∘ H, UτF⟩L2
μN

=
1
N

N

∑
n=1

ϕj(xn)fn+q

UτF !xn

Gϕ = λϕ

ψj(x) = ⟨kx, ϕj⟩ℋ ≈
1
N

N

∑
i=1

k(x, xi)ϕj(xi)

ϕj(xn)

ψj(x)

Zτ(x) =
1
N

N

∑
n=1

p(x, xn)fn+q

p(x, xn) =
l(τ)

∑
j=1

ψj(x)ϕj(xn)
λj



! Recall expectation 

! UQ given by conditional variance of KAF forecast  

UQ: conditional variance

!10

Zτ(x) =
l(τ)

∑
j=1

cj(τ)

λj

ψj(x)

cj(τ) = ⟨ϕj ∘ H, UτF⟩L2
μN

=
1
N

N

∑
n=1

ϕj(xn)fn+q

E2
τ (x) =

L

∑
j=1

cj(τ)

λj

ψj(x)

cj(τ) = ⟨ϕj ∘ H, (UτF − Zτ)2⟩L2(μN) =
1
N

N−1

∑
n=0

ϕj(xn)(Zτ(xi) − fi+q)2

New observable



! Variable-bandwidth radial basis function kernels compensate for 
variations in sampling data 

! Data-dependent parameters   

! Bistochastic normalization Ñ> SPD kernel 

! Eigenvectors of G computed using SVD

Choice of kernel

!11

[Berry & Harlim 2016]

[Das et al 2018]

Kij = exp(
−∥xi − xj∥2

δr(xi)−1/mr(xj)−1/m )

[Coifman & Hirn 2013]

δ, r, m

di =
N

∑
j=1

Kij, qi =
N

∑
j=1

Kij

dj

K̂ij =
Kij

diq1/2
j

, G = K̂K̂T



Multiscale test problems
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·x = v0(x) +
1
ε

By

·y =
1
ε2

g(y)

·x = v0(x) + By

·y =
1
ε

g(x, y)

Two kinds of scale-separated systems 

! Averaging (climate, meteorology)  

! Homogenization (molecular dynamics)

[Givon, Kupferman & Stuart 2004, Pavliotis & Stuart 2008]



Multiscale test problems
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Two kinds of scale-separated systems 

! Averaging (climate, meteorology)  

! Homogenization (molecular dynamics) 

! When observing only x, conditional expectation simpliÞes!

·x = v0(x) +
1
ε

By

·y =
1
ε2

g(y)

·x = v0(x) + By

·y =
1
ε

g(x, y)

ε → 0 ·X = v0(X) + v(X),

v(ζ) = ∫𝒴
By μζ(dy)

ε → 0 ·X = v0(X) + 2σ ·W

∫ By μ(dy) = 0

[Givon, Kupferman & Stuart 2004, Pavliotis & Stuart 2008]



Homogenization: Lorenz 63
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·X = X − X3 + 2σ ·W

·x = x − x3 +
4

90ε
y2,

·y1 =
10
ε2

(y2 − y1),

·y2 =
1
ε2

(28y1 − y2 − y1y3),

·y3 =
1
ε2 (

y1y2 −
8
3

y3)
.

Forecast data

H(ω) = F(ω) = x

Fast

ε → 0

! Slow variable (x) forced by chaotic Lorenz 63

! As           x(t) has SDE limit driven by Brownian motion

[Givon, Kupferman & Stuart 2004, Melbourne & Stuart 2011]



Homogenization: Lorenz 63
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x(t)

ε2 = .001

! exp
!

"
1

4!
(1 " X 2)2

"

<latexit sha1_base64="Qn36kBQhSQU61ASfKDP2zontUPs="></latexit><latexit sha1_base64="Qn36kBQhSQU61ASfKDP2zontUPs="></latexit><latexit sha1_base64="Qn36kBQhSQU61ASfKDP2zontUPs="></latexit><latexit sha1_base64="Qn36kBQhSQU61ASfKDP2zontUPs="></latexit>

·X = X − X3 + 2σ ·W

! Trajectory of slow variable

! x distribution matches invariant measure of SDE

ρ∞(X) ∝ exp( − (1 − X2)2/4σ)



Prediction with KAF
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! Forecast+UQ agree with X statistics computed via Monte-Carlo 
(black,red)

Zτ(x0 = − 1)

τ

·X = X − X3 + 2σ ·W

! KAF forecast (blue) at initial point x=-1



Prediction with KAF
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! Conditional variance indicates higher uncertainty at x=0



Di!usion eigenvectors
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<latexit sha1_base64="s0EAtt7D6t1IT1Ht6/dRqSroRII="></latexit><latexit sha1_base64="s0EAtt7D6t1IT1Ht6/dRqSroRII="></latexit><latexit sha1_base64="s0EAtt7D6t1IT1Ht6/dRqSroRII="></latexit><latexit sha1_base64="s0EAtt7D6t1IT1Ht6/dRqSroRII="></latexit>

! Convergence to geometric harmonics

Laplace-Bertrami eigenfunctions 
of stochastic process

ϕj(X)



Di!usion eigenfunctions
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!     Extension to out-of-sample data points

x(t)

ϕ2



Averaging: Lorenz 96
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·Xk = − Xk−1(Xk−2 − Xk+1) − Xk + Fx + Bk(X)

Bk(x) = ∫ℝJ

f(x, y)μx(dy)

·xk = − xk−1(xk−2 − xk+1) − xk + Fx +
hx

J

J

∑
j=1

yj,k, k ∈ {1,…, K},

ε ·y = − yj+1,k(yj+2,k − yj−1,k) − yj,k + hyxk

ε → 0
xk(t) ≈ Xk(t)

K = 9
J = 8

! Networked multiscale dynamics with K slow variables, each coupled to J 
ergodic fast variables 

Data and response

H(ω) = x, F(ω) = x1

! Limiting behavior is deterministic => expectation disappears! 
KAF forecast tracks trajectory.           



Averaging: Lorenz 96
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Periodic Quasiperiodic Chaotic

Fig. 4.1 . Lorenz 96 regimes of increasing complexity (left to right) . Phase portraits show
(x1, x2, x3) coordinates shaded by x4. The parameter Fx takes values 5.0, 6.9 and 10.0 respectively,
from left to right, and all other parameters are as in (4.3).

Figure 4.1 demonstrates the three responses within system (4.1) resulting from these511

parameter choices.512

4.2. Conditional Expectation and Variance. We aim to predict the x1 vari-513

able from historical data of a long trajectory of x alone. Thus the observation and514

observable maps areH (! ) = x, F (! ) = x1. We will also use F (! ) = x2
1 when esti-515

mating conditional variance. By tuning the scalar parameter Fx (not to be confused516

with function F ) as outlined in the preceding subsection we can obtain periodic,517

quasi-periodic and chaotic responses in the averaged variableX . It is intuitive that518

the ability of the KAF to track the true trajectory of the slow variables decreases519

with increasing complexity; in other words, predictions in the periodic case should520

be the most accurate whilst those in the chaotic case present a signiÞcant challenge.521

In the experiments that follow the size and sampling interval of the source (training)522

data remain Þxed at (40000, 0.05) and the out-of-sample (test) data set is Þxed at523
öN = 7000.524

The space of observablesX in the current example is the space of all slow vari-525

ables. Since, under the small-" limit, an ODE closure of the slow dynamics is obtained,526

the variable x behaves (approximately) like a deterministic Markov process, and the527

expectation in (2.2) disappears; the predictor is expected to track the actual trajec-528

tory x1(t). To see this another way, note that simply knowing the initial values of529

the x-variables (recall that X is precisely all x-variables) and the closureC(X ) in530

equation (4.2), we are able to predict x1 (or indeed, any xk ) exactly, given the initial531

conditions for all x-variables.532

However this picture is greatly a! ected by the sensitivity of the system to initial533

conditions. We now describe how these predictions work in practice, in the three534

regimes shown in Figure4.1. We display our results in Figure 4.2, where x1 and535

standard deviation bands are predicted and compared with the true signal starting536

from the same point. The long-term predictability in each regime is constrained by537

the complexity of the underlying Markovian, deterministic, slow dynamics. In the538

periodic regime, since chaos is absent in the slow variables, a perfect predictor is539

obtained via the partially observed dynamics; one interpretation of why this occurs540

is because observables are Þnite linear combination of Koopman eigenfunctions [2].541

Observe that Z! remains in phase, and the forecast variance is negligible, for long542

lead times up to the length of the entire out-of-sample trajectory (# = 350). The543

quasiperiodic trajectory is tracked imperfectly, but with signiÞcant accuracy over the544

same range of times; errors are visible mainly around the extrema ofx1 as suggested by545

15
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Phase portraits (x1,x2,x3)

! 3 parametric regimes: periodic, quasi periodic, chaotic

Fx = 5 Fx = 6.9 Fx = 10

Y1(t)
x1(t)



Prediction with KAF
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Periodic

Quasiperiodic

⌧

Chaotic

Fig. 4.2 . Predictability: Periodic, quasi-periodic and chaotic regimes. Prediction
Z⌧ (x ) of observable F (x ) = x1 across 3 di↵erent regimes. In each Þgure grey is the true trajectory,
blue the predictor using KAF, and pink gives two standard deviations conÞdence bands, computed
using the conditional variance. The parameter Fx takes values 5.0, 6.9 and 10.0 respectively, from
top to bottom, and all other parameters are as in (4.3). In the Þrst, periodic response regime, the
trajectory is predicted almost perfectly and this accuracy is reßected in the narrow conÞdence bands.
In the second, quasi-periodic response regime, the trajectory is predicted very well, but with growing
error reßected accurately in the slowly growing conÞdence bands. In the third, chaotic response
regime, the predictive capability is lost due to sensitivity to initial conditions and this is reßected in
the rapidly growing conÞdence bands and in the convergence of the predictor to a constant, for large
⌧.

the phase portrait; the conditional variance reflects the significant accuracy present.546

Prediction in the fully chaotic regime only tracks the trajectory, however, until a lead547

time of approximately 1 time unit, exhibiting behaviour at long lead times which is548

somewhat similar to that seen in the previous, homogenization, section in which the549

predicted variable behaved as if drawn from a Markov stochastic process. In particular550

the long-term predictor in the chaotic regime converges to a constant by construction,551

assuming mixing, and this is consistent with the inherent unpredictability of chaotic552

dynamics. It is notable that the size of the conditional variance, and the resulting553

confidence bands, is a useful guideline as to the pathwise accuracy of the data-driven554

predictor. The observations about the predictability of the system by KAF methods555

are also manifest in Figure 4.3 which shows the RMSE in each of the periodic, quasi-556

periodic and chaotic regimes.557

We mention that in the quasi-periodic case the presence of multiple attractors (or558

multiple lobes of the same attractor), and resulting intermittent switching between559

these attractors, leads to a loss of predictability that is significant on time-scales much560

16
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! KAF perfect in the periodic case 

! Long term KAF forecast 
converges to a constant for 
mixing dynamics 

! UQ grows quickest in chaotic 
regime



Comparison with GPR

! Model-data-driven closure model using Gaussian process regression 

! Train on pairs (xk,Yk) to learn Bk(X) (accesses extra information) 

! Simulate closure equation from same initial point as KAF

!23

·Xk = − Xk−1(Xk−2 − Xk+1) − Xk + Fx + GP(X)

GP(x) ≈ Bk(x) = ∫ℝJ

f(x, y)μx(dy)

Fig. 4.4. Mean of Gaussian process regression as a closure. Function cGP , and data
used to determine it, from data generated by (4.1) with parameters as in (4.3) and Fx = 10.0

2 4 6 8 10 12

-1

0

1

2

3

4 Periodic

2 4 6 8 10 12

-2

-1

0

1

2

3

4
Quasiperiodic

2 4 6 8 10 12

-5

0

5

10

⌧

Chaotic

Fig. 4.5. Comparison of data-driven and model-data-driven prediction The true trajec-
tory is shown in grey, the KAF data-driven prediction in blue and the model-data-driven predictions
based on (4.4) in dotted-red; the periodic, quasiperiodic, and chaotic regimes are considered in turn.

trajectory itself the model-data based predictor (4.4) is superior to KAF in the chaotic595

case. Note that the model-data based predictor has access to more data than does596

the KAF, and requires model knowledge; the KAF is entirely data-driven.597

We now dig a little deeper into the comparison. We do this in a systematic way598

in the periodic, quasi-periodic and chaotic regimes. In each of these three cases we599

show four RMSE error curves, labelled as follows: a) the standard KAF based on x600

data alone; b) an enhanced KAF using (x,By) data, the same data used to train601

18
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Comparison with GPR

! KAF perfect in the periodic case 

! KAF stays in phase longer in 
quasiperiodic regime 

! GPR better than KAF for 
chaotic regime

 24

Fig. 4.4. Mean of Gaussian process regression as a closure. Function cGP , and data
used to determine it, from data generated by (4.1) with parameters as in (4.3) and Fx = 10.0
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Fig. 4.5. Comparison of data-driven and model-data-driven prediction The true trajec-
tory is shown in grey, the KAF data-driven prediction in blue and the model-data-driven predictions
based on (4.4) in dotted-red; the periodic, quasiperiodic, and chaotic regimes are considered in turn.

trajectory itself the model-data based predictor (4.4) is superior to KAF in the chaotic595

case. Note that the model-data based predictor has access to more data than does596

the KAF, and requires model knowledge; the KAF is entirely data-driven.597

We now dig a little deeper into the comparison. We do this in a systematic way598

in the periodic, quasi-periodic and chaotic regimes. In each of these three cases we599

show four RMSE error curves, labelled as follows: a) the standard KAF based on x600

data alone; b) an enhanced KAF using (x,By) data, the same data used to train601

18
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RMSE comparison

!25

2 4 6 8 10 12

10
-2

10
-1

10
0 a

b

c

d

Periodic

2 4 6 8 10 12
0

0.5

1

1.5 Quasiperiodic

2 4 6 8 10 12

1

2

3

4

5

⌧

Chaotic

Fig. 4.6. RMSE comparison for the four cases a)–d) described in the text, in the
periodic, quasiperiodic, and chaotic regimes. In the periodic regime, KAF (a) is an ideal
predictor with negligible growth in error (note the logarithmic scale). In the quasiperiodic response
regime, the growth in RMSEwith KAF (a,b) is significantly slower than that of the ODE prediction
(c). In the chaotic response regime, the ODE prediction (c) is more accurate in the near term, yet
KAF error stabilizes as the prediction converges to the conditional mean.

the ODE (4.4); c) a prediction using the ODE (4.4); d) a KAF prediction trained602

on X data alone, generated by the ODE (4.4). Figure 4.6 shows that KAF a) is the603

ideal predictor in the periodic regime and is near-ideal in the quasi-periodic regime;604

on the other hand the ODE (4.4) predictor c) is ideal for short-term predictability605

in the chaotic case. Augmenting observations with By within KAF, as in b), gives606

errors similar to those arising from a), when observing x alone; thus knowledge of By607

provides little extra information. In the chaotic case, the RMSE s of KAF trained on608

x, a), and on X, d), are very close, confirming that the ODE (4.4) for X captures the609

invariant measure of the approximately Markovian variables x as intended.610

4.4. Non-Markovian regime. In the preceding subsections we studied predic-611

tors for x, based only on time-series data in the x coordinate, for the equation (4.1).612

We studied the scale-separated regime where " ⌧ 1 and x is approximately Markov-613

ian and deterministic – it is approximately governed by an ODE. Here we study the614

behavior of identical predictors when " = 1; the system (4.1) then no longer exhibits615

averging and x is no longer Markovian because there is no scale-separation between x616

and y. Our experiments are conducted with Fx = 10. Because of the lack of Markovian617

behaviour we expect rapid loss of predictability in time, when H(!) = x, F (!) = x1.618

The resulting conditional mean and variance, shown in Figure 4.7, confirms this intu-619

ition. Indeed the conditional mean is out of phase with the truth at lead time ⌧ = 1,620
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a. KAF trained on xk 

b. KAF trained on xk augmented 
by Yk 

c. GPR prediction 

d. KAF trained on GPR closure 
model
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H (! ) = x

⌧

H (! ) = [ x, 4y2/ 90]T

Fig. 3.5. Prediction in non-Markovian regime, " = 1 , requires observations augmented
by the forcing term to achieve short-term predictability.

3.4. Non-Markovian Regime. In the preceding subsections we studied pre-443

dictors for x, based only on time-series data in the x coordinate, for the equation444

(3.1). We studied the scale-separated regime where " ⌧ 1 and x is approximately445

Markovian – it is approximately governed by an SDE. Here we study the behavior of446

identical predictors when " = 1; the system (3.1) then no longer exhibits homoge-447

nization and x is no longer Markovian in view of the lack of scale-separation. As a448

result, the prediction of x, shown in the top of Figure 3.5, is poor even at very short449

times, and the two standard deviation confidence bands reflect this rapid initial error450

growth, and then remain large throughout the time window. Z⌧ converges rapidly451

to the conditional mean. To render the problem Markovian we may include more452

data, and in particular the forcing term. To this end we take H(!) = [x, 4y2/90]T .453

The prediction of x with these augmented observations yields very accurate predic-454

tions over a lead time of ⌧ = 3, considerably larger than in the preceding case where455

H(!) = x. After ⌧ = 3, however, predictability again fails, due to the sensitive de-456

pendence of solutions with respect to the forcing function. Once again Z⌧ converges457

to the conditional mean. This non scale-separated pair of examples illustrates that458

prediction of non-Markovian variables is inherently harder than Markovian variables,459

but that sensitive dependence of trajectories with respect to perturbations also limits460

predictaibility, even in the Markovian setting. This second point will be prominent,461

too, in the next section.462

4. Averaging: Lorenz 96 Multiscale System. This section is devoted to the463

setting in which a chaotic ODE of form (A) is approximated by an ODE of form (A0).464

The goal is to make predictions of the x variable using data concerning the x variable465

alone from (A). The role of (A0) is primarily to help us interpret those predictions;466

however it also serves to motivate a di↵erent prediction methodology, which mixes467

model-based and data-driven methodologies, against which we will compare KAF.468

The averaging setting presents interesting opportunities to understand forecast-469

ing. In particular, by tuning a parameter in (A), which is also present in (A0),470

we are able to create settings in which the variable to be predicted is, in turn, ap-471

proximately periodic, quasi-periodic and chaotic. These di↵erent settings give rise to472
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H(!) = x

Fig. 4.7. Prediction in non-Markovian regime, " = 1, results in much smaller short-term
predictability and rapid convergence of the conditional mean to a constant.

and this is also reflected in the large growth of the conditional variance. Furthermore,621

the conditional mean tapers to a constant at ⌧ = 6, twice as quickly as it does in the622

" ⌧ 1 setting in which this tapering occurs at ⌧ ⇡ 11 (Figures 4.2,4.5).623

5. Conclusions.624

1. We have studied KAF for data-driven prediction:625

• we use multi-scale systems to create dynamical systems in which a subset626

of the variables (slow variables) evolve in an approximately Markovian627

fashion;628

• we study KAF performance for a range of systems in which the slow vari-629

ables are governed approximately by stochastic, chaotic, quasi-periodic630

and periodic behaviour;631

• in the stochastic case we use the homogenized equations for the slow632

variables to obtain explicit formulae for the eigenfunctions of the oper-633

ator underlying KAF, and use these to validate the performance of the634

KAF method;635

• in the chaotic, quasi-periodic and periodic cases we use the averaged636

equations for the slow variables to obtain a GPR-based approximate637

closure model, and use hybrid data-model predictions, from this closure,638

in order to evaluate the KAF method.639

2. What we illustrate about use of the KAF:640

• when the variable being predicted is (approximately) a component of641

a stochastic Markov process then prediction of individual trajectories642

is not possible, whilst the mean and variance, averaged over possible643

realizations of the stochastic behaviour, can be accurately predicted by644

KAF;645

• when the variable being predicted is (approximately) a component of a646

deterministic but chaotic Markov process then prediction of individual647

trajectories is also not possible, except over short time horizons;648

• in both the stochastic and chaotic settings a signature of the lack of649

predictability is the convergence of the predictor to a constant, for large650

⌧ , accompanied by the data-driven choice of parameter ` converging to651

one;652

• when the variable being predicted is (approximately) a component of a653

deterministic quasi-periodic or periodic process the prediction of individ-654

ual trajectories over long time horizons is possible; in this case parameter655

` stays away from one, for significantly large ⌧ ;656

• in all cases the predicted standard deviations around the predictor pro-657
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Periodic

Quasiperiodic

⌧

Chaotic

Fig. 4.2 . Predictability: Periodic, quasi-periodic and chaotic regimes. Prediction
Z⌧ (x ) of observable F (x ) = x1 across 3 di↵erent regimes. In each Þgure grey is the true trajectory,
blue the predictor using KAF, and pink gives two standard deviations conÞdence bands, computed
using the conditional variance. The parameter Fx takes values 5.0, 6.9 and 10.0 respectively, from
top to bottom, and all other parameters are as in (4.3). In the Þrst, periodic response regime, the
trajectory is predicted almost perfectly and this accuracy is reßected in the narrow conÞdence bands.
In the second, quasi-periodic response regime, the trajectory is predicted very well, but with growing
error reßected accurately in the slowly growing conÞdence bands. In the third, chaotic response
regime, the predictive capability is lost due to sensitivity to initial conditions and this is reßected in
the rapidly growing conÞdence bands and in the convergence of the predictor to a constant, for large
⌧.

the phase portrait; the conditional variance reflects the significant accuracy present.546

Prediction in the fully chaotic regime only tracks the trajectory, however, until a lead547

time of approximately 1 time unit, exhibiting behaviour at long lead times which is548

somewhat similar to that seen in the previous, homogenization, section in which the549

predicted variable behaved as if drawn from a Markov stochastic process. In particular550

the long-term predictor in the chaotic regime converges to a constant by construction,551

assuming mixing, and this is consistent with the inherent unpredictability of chaotic552

dynamics. It is notable that the size of the conditional variance, and the resulting553

confidence bands, is a useful guideline as to the pathwise accuracy of the data-driven554

predictor. The observations about the predictability of the system by KAF methods555

are also manifest in Figure 4.3 which shows the RMSE in each of the periodic, quasi-556

periodic and chaotic regimes.557

We mention that in the quasi-periodic case the presence of multiple attractors (or558

multiple lobes of the same attractor), and resulting intermittent switching between559

these attractors, leads to a loss of predictability that is significant on time-scales much560
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Fig. 4.2 . Predictability: Periodic, quasi-periodic and chaotic regimes. Prediction
Z⌧ (x ) of observable F (x ) = x1 across 3 di↵erent regimes. In each Þgure grey is the true trajectory,
blue the predictor using KAF, and pink gives two standard deviations conÞdence bands, computed
using the conditional variance. The parameter Fx takes values 5.0, 6.9 and 10.0 respectively, from
top to bottom, and all other parameters are as in (4.3). In the Þrst, periodic response regime, the
trajectory is predicted almost perfectly and this accuracy is reßected in the narrow conÞdence bands.
In the second, quasi-periodic response regime, the trajectory is predicted very well, but with growing
error reßected accurately in the slowly growing conÞdence bands. In the third, chaotic response
regime, the predictive capability is lost due to sensitivity to initial conditions and this is reßected in
the rapidly growing conÞdence bands and in the convergence of the predictor to a constant, for large
⌧.

the phase portrait; the conditional variance reflects the significant accuracy present.546

Prediction in the fully chaotic regime only tracks the trajectory, however, until a lead547

time of approximately 1 time unit, exhibiting behaviour at long lead times which is548

somewhat similar to that seen in the previous, homogenization, section in which the549

predicted variable behaved as if drawn from a Markov stochastic process. In particular550

the long-term predictor in the chaotic regime converges to a constant by construction,551

assuming mixing, and this is consistent with the inherent unpredictability of chaotic552

dynamics. It is notable that the size of the conditional variance, and the resulting553

confidence bands, is a useful guideline as to the pathwise accuracy of the data-driven554

predictor. The observations about the predictability of the system by KAF methods555

are also manifest in Figure 4.3 which shows the RMSE in each of the periodic, quasi-556

periodic and chaotic regimes.557

We mention that in the quasi-periodic case the presence of multiple attractors (or558

multiple lobes of the same attractor), and resulting intermittent switching between559

these attractors, leads to a loss of predictability that is significant on time-scales much560
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! Long term prediction accuracy in multiscale systems 



Multiscale Problems

observation

F
response

data space X
X

R

z⌧ = F (!⌧ )

!⌧ = �⌧ (!)
x = X (!)

!
state space ⌦

• Predict response, given time-ordered data (x1, z1), (x2, z2), . . . , (xn, zn)
• Goal: Map new data x := x(t) to response at a future time z(t + ⌧)
• Challenge: unknown (nonlinear) dynamics; only macroscales are observed
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! Outlook 

! Optimizing partial observations 

! Data assimilation 

! Parametric dependence 

! Vector-valued observables
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